The Reality of Quantum Weirdness

In Akira Kurosawa’s film Rashomon, a samurai has been murdered, but it’s not clear why or by whom


In Akira Kurosawa’s film Rashomon, a samurai has been murdered, but it’s not clear why or by whom. Various characters involved tell their versions of the events, but their accounts 1 contradict one another. You can’t help wondering 2 : Which story is true?

But the film also makes you consider a deeper question: Is there a true story, or is our belief in a definite, objective, observer-independent reality an illusion?

This very question, brought into sharper 3, scientific focus, has long been the subject of debate in quantum physics. Is there a fixed reality apart from our various observations of it? Or is reality nothing more than a kaleidoscope of infinite possibilities?

This month, a paper published online in the journal 4 Nature Physics presents experimental research that supports the latter 5 scenario - that there is a Rashomon effect not just in our descriptions of nature but in nature itself.

Over the past hundred years, numerous experiments on elementary particles have upended 6 the classical paradigm of a causal, deterministic universe. Consider, for example, the so-called 7 double- slit 8 experiment. We shoot 9 a bunch 10 of elementary particles - say, electrons - at a screen that can register their impact. But in front of the screen, we place a partial obstruction: a wall with two thin parallel vertical slits. We look at the resulting pattern of electrons on the screen. What do we see?

If the electrons were like little pellets 11 (which is what classical physics would lead us to believe), then each of them would go through one slit or the other, and we would see a pattern of two distinct lumps 12 on the screen, one lump behind each slit. But in fact we observe something entirely different: an interference pattern, as if two waves are colliding, creating ripples 13.

Astonishingly, this happens even if we shoot the electrons one by one, meaning that each electron somehow 14 acts like a wave interfering with itself, as if it is simultaneously passing through both slits at once.

So an electron is a wave, not a particle? Not so fast. For if we place devices at the slits that “ tag 15 ” the electrons according to 16 which slit they go through (thus17 allowing us to know their whereabouts 18 ), there is no interference pattern. Instead, we see two lumps on the screen, as if the electrons, suddenly aware 19 of being observed, decided to act like little pellets.

To test their commitment 20 to being particles, we can tag them as they pass through the slits - but then, using another device, erase 21 the tags before they hit the screen. If we do that, the electrons go back to their wavelike behavior, and the interference pattern miraculously reappears.

There is no end to the practical jokes we can pull 22 on the poor electron! But with a weary 23 smile, it always shows that the joke is on us. The electron appears to be a strange hybrid of a wave and a particle that’s neither here and there nor here or there. Like a well-trained actor, it plays the role it’s been called to perform. It’s as though it has resolved to prove the famous Bishop Berkeleymaxim “to be is to be perceived.”

Is nature really this weird 24? Or is this apparent weirdness just a reflection of our imperfect knowledge of nature?

The answer depends on how you interpret the equations of quantum mechanics, the mathematical theory that has been developed to describe the interactions of elementary particles. The success of this theory is unparalleled: Its predictions, no matter 25 how “ spooky 26,” have been observed and verified with stunning 27 precision. It has also been the basis of remarkable technological advances. So it is a powerful tool. But is it also a picture of reality?

Here, one of the biggest questions is the interpretation of the so-called wave function, which describes the state of a quantum system. For an individual particle like an electron, for example, the wave function provides information about the probabilities that the particle can be observed at particular locations, as well as the probabilities of the results of other measurements of the particle that you can make, such as measuring its momentum.

Does the wave function directly correspond to an objective, observer-independent physical reality, or does it simply represent an observer’s partial knowledge of it?

If the wave function is merely knowledge-based, then you can explain away 28 odd 29 quantum phenomena by saying that things appear to us this way only because our knowledge of the real state of affairs is insufficient. But the new paper in Nature Physics gives strong indications (as a result of experiments using beams 30 of specially prepared photons to test certain statistical properties of quantum measurements) that this is not the case. If there is an objective reality at all, the paper demonstrates, then the wave function is in fact reality-based.

What this research implies is that we are not just hearing different “stories” about the electron, one of which may be true. Rather, there is one true story, but it has many facets, seemingly in contradiction, just like in “Rashomon.” There is really no escape from the mysterious - some might say, mystical - nature of the quantum world.

But what, if anything, does all this mean for us in our own lives? We should be careful to recognize that the weirdness of the quantum world does not directly imply the same kind of weirdness in the world of everyday experience. That’s because the nebulous quantum essence of individual elementary particles is known to quickly dissipate in large ensembles of particles (a phenomenon often referred to as “decoherence”). This is why, in fact, we are able to describe the objects around us in the language of classical physics.

Rather 31, I suggest that we regard 32 the paradoxes of quantum physics as a metaphor for the unknown infinite possibilities of our own existence. This is poignantly 33 and elegantly expressed in the Vedas: “As is the atom, so is the universe; as is the microcosm, so is the macrocosm; as is the human body, so is the cosmic body; as is the human mind, so is the cosmic mind.”


1. account: relat

2. to wonder: preguntar-se

3. sharp: nítid

4. journal: revista científica

5. latter: últim

6. to upend: capgirar

7. so-called: anomenat

8. slit: escletxa

9. to shoot: llançar

10. bunch: grapat

11. pellet: perdigó

12. lump: massa

13. ripple: ona

14. somehow: d’alguna manera

15. to tag: etiquetar

16. according to: segons

17. thus: per tant / així

18. whereabouts: parador

19. aware: conscient

20. commitment: compromís

21. to erase: esborrar

22. to pull (a joke): fer (una broma)

23. weary: fatigat

24. weird: estrany

25. no matter: per més... que sigui

26. spooky: inquietant

27. stunning: impressionant

28. to explain away: trobar una explicació

29. odd: estrany

30. beam: raig

31. rather: si no

32. to regard: considerar

33. poignant: punyent

El + vist

El + comentat